Expression of ENaC subunits, chloride channels, and aquaporins in ovine fetal lung: ontogeny of expression and effects of altered fetal cortisol concentrations.
نویسندگان
چکیده
Transition of the epithelium of the fetal lung from fluid secretion to fluid reabsorption requires changes in the expression of ion channels. Corticosteroids regulate expression of several of these channels, including the epithelium sodium channel (ENaC) subunits and aquaporins (AQP). We investigated the ontogenetic changes in these ion channels in the ovine fetal lung during the last half of gestation, a time of increasing adrenal maturation. Expression of the mRNAs for the chloride channels, cystic fibrosis transmembrane conductance regulator (CFTR), and chloride channel 2 (CLCN2) decreased with age. Expression of mRNAs for AQP1, AQP5, and for subunits of ENaC (alpha, beta, gamma) increased with age. In the fetal sheep the expression of ENaCbeta mRNA was dramatically higher than the expression of ENaCalpha or ENaCgamma, but expression of ENaCbeta protein decreased with maturation, although the ratio of the mature (112 kDa) to immature (102 kDa) ENaCbeta protein increased with age, particularly in the membrane fraction. In contrast, ENaCalpha mRNA and protein both increase with maturation, and the mature form of ENaCalpha (68 kDa) predominates at all ages. A modest increase in fetal cortisol, within the range expected to occur naturally in late gestation but prior to active labor, increased ENaCalpha mRNA but not ENaCbeta, ENaCgamma, or AQP mRNAs. We conclude that in the ovine fetal lung, appearance of functional sodium channels is associated with induction of ENACalpha and ENaCgamma, and that ENaCalpha expression may be induced by even small, preterm increases in fetal cortisol.
منابع مشابه
Is the Fetal Lung a Mineralocorticoid Receptor Target Organ? Induction of Cortisol-Regulated Genes in the Ovine Fetal Lung, Kidney and Small Intestine
BACKGROUND Lung, kidney and small intestine are involved in fetal volume regulation and amniotic fluid secretion and play a pivotal role in the transition from intrauterine to extrauterine life. OBJECTIVE This study was performed to determine the ontogeny of mineralocorticoid receptors (MR) and glucocorticoid receptors (GR), and of MR- and GR-regulated genes and proteins, serum and glucocorti...
متن کاملTemporal regulation of CFTR expression during ovine lung development: implications for CF gene therapy.
The cystic fibrosis transmembrane conductance regulator (CFTR) protein is a small conductance chloride ion channel that may interact directly with other channels including the epithelial sodium channel (ENaC). CFTR is known to be more abundant in the airway epithelium during the second trimester of human development than after birth. This could be a consequence of the change in function of the ...
متن کاملThe effects of electromagnetic fields on alpha-fetoprotein expression in the amniotic fluid of mouse embryo
Amniotic fluid (AF) is essential for fetal development and maturation during pregnancy. The levels of proteins in AF have been determined in many studies to screen for potential biomarkers of pregnancy-associated abnormalities. Alpha-fetoprotein (AFP) is a major AF and plasma protein produced by the yolk sac and the liver during the fetal period. APF serum concentrations are commonly used for s...
متن کاملDifferential translational efficiency of ENaC subunits during lung development.
The amiloride-sensitive epithelial Na(+) channel (ENaC), the rate-limiting step in epithelial Na(+) transport, consists of three subunits: alpha, beta, and gamma. The abundance of mRNA encoding the alpha-subunit far surpasses the amount for other subunits, and considerably exceeds the predicted subunit protein stoichiometry. We evaluated 5'-untranslated region (UTR) expression and found that fe...
متن کاملPulmonary fluid balance in the human newborn infant.
At birth, the infant's lungs must be cleared of fetal lung fluid. This process is mediated through the activation of airway epithelial sodium channels (ENaC). In animals, ENaC is considered crucial for postnatal pulmonary adaptation. In humans, postnatal ENaC expression is gestational age dependent and its activity, measured as nasal potential difference, correlates with lung compliance. It is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 297 2 شماره
صفحات -
تاریخ انتشار 2009